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Abstract The principal object of this study is blast-induced ground 
vibration (PPV), which is one of the dangerous side effects of blasting 
operations in an open-pit mine. In this study, nine artificial neural 
networks (ANN) models were developed to predict blast-induced PPV in 
Nui Beo open-pit coal mine, Vietnam. Multiple linear regression and the 
United States Bureau of Mines (USBM) empirical techniques are also 
conducted to compare with nine developed ANN models. 136 blasting 
operations were recorded in many years used for this study with 85% of 
the whole datasets (116 blasting events) was used for training and the rest 
15% of the datasets (20 blasting events) for testing. Root Mean Square 
Error (RMSE), Determination Coefficient (R2), and Mean Absolute Error 
(MAE) are used to compare and evaluate the performance of the models. 
The results revealed that ANN technique is more superior to other 
techniques for estimating blast-induced PPV. Of the nine developed ANN 
models, the ANN 7-10-8-5-1 model with three hidden layers (ten neurons 
in the first hidden layer, eight neurons in the second layers, and five 
neurons in the third hidden layer) provides the most outstanding 
performance with an RMSE of 1.061, R2 of 0.980, and MAE of 0.717 on 
testing datasets. Based on the obtained results, ANN technique should be 
applied in preliminary engineering for estimating blast-induced PPV in 
open-pit mine. 
 

1. Introduction 

Blasting is one of the most effective methods for rock breakage in open-pit mine. 
However, its environmental impacts are significant and should be considered, 
including ground vibration (PPV), air overpressure, and fly rock [14, 17, 32]. Of 
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these side effects, PPV is a significant influence on surrounding structures such as 
benches, slopes, groundwater, and residential areas [21, 28, 34, 32]. Therefore, the 
precise prediction of PPV is necessary to minimize adverse impacts on the 
surrounding environment.  

The level of PPV is influenced by different parameters. They can be divided into 
three main groups: blast design parameters, explosive parameters, and rock mass 
properties [18, 26, 57]. Of these main groups, the blast design parameters are 
controllable parameters including blast hole diameter, length of the borehole, 
explosive capacity, column charge length, length of terming, powder factor, spacing, 
methods and diagrams of blasting [26, 35]. In the explosive parameters, type of 
explosive (ANFO, water gel, emulsion, or dynamite), the velocity of detonation 
(VoD), its density, powder factor (kg ANFO/m3) are also controllable parameters 
[24]. Unlike the parameters of the first and second groups, the parameters of the 
third groups are uncontrollable parameters such as rock hardness, cracking, 
stratification, burden, and compressive strength of rock [20]. Based on the 
parameters of these groups, it can be seen that accurate prediction of PPV is not 
simple. Because of its complexity, many scientists have chosen to approach 
experimental techniques for estimating PPV based on two major parameters, the 
explosive capacity (W) and the monitoring distance (R) [7, 22, 37, 43, 51, 59]. 
However, based on the results of some studies, empirical techniques are often less 
accurate and do not applied in all sites [23, 29, 36].  

Reviewing recent literature shows that the complexity of the parameters that 
affect PPV can be solved by artificial intelligence (AI). Sheykhi, Bagherpour [55] 
have developed a hybrid model using Support Vector Regression (SVR) and Fuzzy 
C-means clustering (FCM) algorithms (FCM-SVR) for predicting blast-induced 
PPV in Sarcheshmeh copper mine, Iran with 120 blasting events and 7 different 
parameters. The SVR model and the United States Bureau of Mines (USBM) 
empirical equation were also used to evaluate the effectiveness of the FCM-SVR 
model. Their results indicated that the SVR model provided higher performance than 
the USBM experimental technique. In particular, it achieved optimum performance 
when combined with the FCM algorithm and the FCM-SVR hybrid model proposed 
to predict the actual PPV. In another study, Ragam and Nimaje [48] have developed 
a simple artificial neuron network with a hidden layer consisting of 5 hidden neurons 
and a feed-forward back propagation algorithm for predicting PPV in ACC mine, 
Iran. The results showed that the ANN model predicted PPV better than other 
techniques they have tested. Based on neural network, the group method of data 
handling (GMDH) model was developed by Mokfi, Shahnazar [39] to predict PPV 
in a quarry of Malaysia, using 102 blasting operations. They concluded that GMDH 
forecasting technique could be presented as a powerful technique in predicting PPV 
with R2 of 0.911 and RMSE of 0.889. In addition, research on the application of AI 
hybrid models and experimental techniques was conducted by Hasanipanah, Amnieh 
[26] with the fuzzy system (FS) and imperialistic competitive algorithm (ICA) to 
predict PPV in Miduk copper mine, Iran. Their research has shown promising results 
with an R2 of 0.942. 

Based on the review of the literature, it can be seen that AI techniques have been 
studied and developed quite firmly in the predicted blast-induced PPV in open-pit 
mine. Nevertheless, no model can represent all areas of study. Thus, in this study, 
we develop some ANN models for predicting blast-induced PPV in Nui Beo open-
pit coal mine, Vietnam. Another model, namely Multiple Linear Regression (MLR) 
and the United States Bureau of Mines (USBM) practical techniques were also used 
in this study to assess the effectiveness of the developed ANN models.  
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The article is organized into six sections: Section 1 gives an overview of the 
literatures and the reasons for doing this research; Section 2 summarizes the study 
area and the data used; Section 3 gives an overview of the methodologies used; 
Section 4 develops PPV forecasting models; Section 5 presents the results of this 
work and discussion; Finally, the conclusions and recommendations in this work. 

 
 

2. Study area and data used 

2.1. Study area 

The site selected for this study was Nui Beo open-pit coal, Vietnam with a 
production of 1,125,000 tons/year; the capacity of overburden is 4.815.000 m3/year. 
It located between latitudes 20057’50” N and 20058’35” N, and between longitudes 
10707’50” E and 10708’50” E (Fig. 1). The most striking feature of this study area is 
that it is located between Ha Long City, where Ha Long Bay is one of the seven 
natural wonders of the world recognized by UNESCO [47]. The residential area is 
adjacent to the mine with a distance of about 100m to the nearest residential unit. 
Therefore, the mine must be conducted in parallel two methods of rock breaking are 
drilling-blasting and mechanical equipment. Of these methods, drilling and blasting 
accounted for 98% of the total capacity of rock breakage. 

 
 

 
 

Fig. 1 Location of Nui Beo open-pit coal mine 
  

Explosives used on the mine are ANFO, Z113 and AN13 emulsion with 250mm 
for blast hole diameter in rock breakage and 42mm diameter for oversize rock 
breakage. The blasting method was applied in Nui Beo open-pit coal mine is non - 
electric delay blasting. Explosive capacity in an explosion is up to 20,000 tons. As 
the mine is near the residential area and the explosive capacity used in each blasting 
event is large, the impact of PPV is not small. Moreover, the Nui Beo open-pit coal 
mine has repeatedly faced the lawsuit due to the impact of PPV caused. Therefore, 
accurate predictions of blast-induced PPV in this area are necessary. 
 
2.2 Describe the data used 



60 Inżynieria Mineralna — LIPIEC – GRUDZIEŃ <2019> JULY – DECEMBER — Journal of the Polish Mineral Engineering Society

As related, the parameters that affect PPV are so many. It is difficult to collect 
and evaluate all the parameters. Thus, in this study, seven input parameters were 
used to predict blast-induced PPV in Nui Beo open-pit coal mine, including the 
elevation between blast sites and monitor (H), explosive charge per delay (W), 
monitoring distance (R), power factor (P), burden (B), spacing (S), time delay (T). 
Of these input parameters, R is determined by handheld GPS system; the remaining 
parameters are taken from 136 blasts design. PPV is measured by Blastmate III 
(Instatel, Canada) [3] in a range of 0.127-254 mm/s. The data used in this study are 
summarized in Table 1. 

 
 

Table 1. Summary of the data used 
 

W R H P 

Min.   : 1109 Min.   :107.0 Min.   :-38.00 Min.   :0.3500 

1st Qu.: 3526 1st Qu.:233.0 1st Qu.:  6.50 1st Qu.:0.3900 

Median : 5086 Median :334.0 Median : 24.00 Median :0.4300 

Mean   : 5455 Mean   :357.9 Mean   : 23.24 Mean   :0.4274 

3rd Qu.: 7214 3rd Qu.:471.2 3rd Qu.: 40.00 3rd Qu.:0.4625 

Max.   :12312 Max.   :797.0 Max.   : 81.00 Max.   :0.5000 

B S T       PPV        

Min.   :6.600 Min.   :7.400 Min.   :6.600  Min.   : 0.91   

1st Qu.:7.000 1st Qu.:7.700 1st Qu.:6.900  1st Qu.: 5.51   

Median :7.400 Median :8.000 Median :7.350  Median :11.10   

Mean   :7.404 Mean   :7.979 Mean   :7.303  Mean   :11.80   

3rd Qu.:7.825 3rd Qu.:8.200 3rd Qu.:7.600  3rd Qu.:17.18   

Max.   :8.200 Max.   :8.500 Max.   :8.000  Max.   :26.83  

 
 

3. Background of Empirical, MLR, and ANN 

3.1. Empirical 

The empirical technique is one of the blast-induced PPV forecasting methods in 
open-pit mine because they are easy to use and capable of producing results quickly. 
Of the current experimental techniques, the United States Bureau of Mines (USBM) 
remained the most commonly used empirical method for predicting PPV and was 
proposed by Duvall and Petkof [15]. The USBM empirical method is described as 
follows: 

 
bRPPV k

W


   
 

                 (1) 
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Where: W is the explosive capacity, Kg; R is the distance between blast face and 
monitoring point, m; k and b are the site factors and are determined by the 
multivariate regression analysis. 

In this study, USBM empirical method was used to estimate blast-induced PPV 
in Nui Beo open-pit coal mine. The PPV forecast results using the USBM technique 
are detailed in the next sections. 

 
 

3.2. Multiple linear regression  

Multiple linear regression (MLR) is a linear equation that fits a dependent variable 
with multiple independent variables [1]. Numerous studies in rock mechanics and 
mining have been published based on the MLR method [4, 16, 25, 53, 52, 56, 60]. 
For example, Ghiasi, Askarnejad [19] successfully used the MLR for predicting rock 
fragmentation in Gole Gohar iron ore open pit mine, Iran. The results of the MLR 
method were higher than those of ANN with R2 = 0.89 and RMSE = 0.19. In another 
study, Shepel, Grafe [54] have also successfully developed the MLR model for 
evaluating cutting forces in granite treated with high-power (24 kW) microwave 
radiation. The application of the MLR model allows for a more detailed analysis of 
the effects of high-power microwave radiation on granite parameters, helping 
engineers improve their stone cutting productivity. Generally, MLR can be 
described by the following equation: 
 

0 1 1 2 2y = a ... n na x a x a x                  (2) 
 
Where, ix (i = 1…n) and y represent independent and dependent variables, 

respectively. Also, ia  (i = 0, 1, . . . , n) represent regression coefficients. 
In this study, MLR was developed to predict blast-induced PPV in Nui Beo open 

pit coal mine with seven input parameters. The multiple regression formulae for 
predicting PPV in this site study is illustrated as follows: 
 

0 1 2 3 4 5 6 7PPV = a RaW a a H a P a B a S a T             (3) 
 
Where 0 7a a  are regression coefficients and are determined by the 

multivariate regression analysis method. The results for determining the multiple 
regression equations for this problem are presented in the next section. 
 
3.3. Artificial neural networks (ANN) 

Artificial neural networks (ANNs) can be considered as an artificial tool based 
on human brain simulations. These include neurons that are connected to each other 
in a flexible and fast way [63]. Many scholars have efforted to develop ANN models 
for various issues in the mining field and achieved the desired results [5, 9, 31, 38, 
40, 42, 45]. For example, Muhammad and Ferentinou [44] have developed an ANN 
model to assess the slope stability based on 141 historical records and 18 input 
parameters. The results show that ANN produces rapid convergence with high 
reliability. An ANN model was also developed based on optimized input parameters 
by the Genetic Algorithm and proposed by Armaghani, Hasanipanah [8] for 
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predicting air overpressure in Penang, Malaysia. The proposed ANN model yielded 
results that could not be more excellent. 

The basic structure of an ANN model includes an input layer, hidden layer(s) 
and output layer [50]. In input layer, neurons act as input variables and transmit data 
to hidden layers (s) via the transfer function. In the first hidden layer, the neurons 
will receive the result from the input layer and process and calculate the weights and 
send it to the second hidden layer via the propagation function. The process 
continues like that until the results are passed to the output layer [64]. 
 The processing of data in the hidden layers is also called training. The outputs 
depend heavily on the training process. In ANN, supervised learning and 
unsupervised learning are two types of learning that can be applied to each ANN 
[46]. In this study, supervised learning was applied to solve the regression problem 
in predicting blast-induced PPV. Seven parameters are introduced into the input 
layer and processed according to ANN model as Fig. 2. The ANN models are 
developed for predicting PPV in this study, and their performance is discussed in 
greater detail in the next sections. 
 

 
 

Fig. 2 The general structure of the ANN model for predicting PPV in this study 
 
 
4. Developing PPV predictive models 

For developing PPV predictive models, data needs to be prepared and processed. 
In this study, 136 blasting events were divided into two sets of data: 85% of the 
whole datasets (116 observations) for training, and the rest 15% (20 observations) 
for testing. Based on the training datasets, the predictive models are developed in the 
next sections. 
 
4.1. Empirical 

As related, the USBM experimental technique in Eq. 1 is used to estimate blast-
induced PPV. Accordingly, the site factors k and b are defined by multivariate 
regression analysis method. The SPSS version 18.0 [12] is used to determine the site 
factors k and b. The results of multivariate regression analysis for the values of k 
and b are 44.067 and 1.023, respectively. The experimental USBM for predicting 
PPV in this study is described in Eq. 4: 
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1.023

44.067 RPPV
W


   
 

                (4) 

 

4.2. MLR 

In MLR, multivariate regression analysis techniques are also used to determine 
regression coefficients according to Eq. 3. SPSS version 18.0 is again used to 
determine the regression coefficients for MLR in this study. Note that, the training 
datasets for building MLR model is similar to the for building the empirical model. 

 Based on that, the regression coefficients for the variables are determined 
correspondingly in Eq. 3 are -5,044; 0.0015; -0.0047; -0.082; -5.161; 0.046; 1,055; 
and 0.756.  The MLR model for predicting blast-induced PPV in Nui Beo open-pit 
coal mine is defined by the following equation: 
 
PPV = 0.0015W-0.0047R-0.082H-5.161P+0.046B
+1.055S+0.756T-5.044

      (5) 

 
4.3. ANN 

For ANN technique, the most critical problem is neural network design [10]. A 
neural network is designed that includes training algorithms, hidden layers, and 
hidden neurons in each hidden layer [30]. The most challenging problem when 
designing an ANN is determining the number of hidden layers and the number of 
neurons in each hidden layer [13, 58, 62]. In theory, an ANN with one hidden layer 
can solve most problems in practice [11]. A neural network with two or more hidden 
layers can solve problems better depending on the circumstances. However, too 
many hidden layers in an ANN will increase the processing time of the network [27, 
61]. Thus, a “trial and error” procedure with one, two, and three hidden layers is 
applied for developing ANN models in this study.  
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Fig. 3 Structure of the ANN models for predicting PPV 

 
The training datasets in ANN technique is used similarly to empirical and MLR 

methods. However, the min-max scale method and scale the data in the interval [0,1] 
was applied to avoid overfitting. Usually scaling in the intervals [0,1] or [-1,1] tends 
to give better results. As a result, nine ANN models were developed for predicting 
blast-induced PPV in this site with one, two and three hidden layers in Fig. 3. 

In Fig. 3, the black line represents for positive weights and the grey line 
represents for negative weights. Line thickness is in proportion to magnitude of the 
weight relative to all others. From I1 to I7 are the input variables, W, R, H, P, B, S, 
T, respectively. H1 to H15 are the neurons in hidden layers. And O1 is the output 
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layer, PPV, respectively. B1, B2, B3 and B4 are bias layers that apply constant 
values to the nodes. 
 
5. Results and discussion 

5.1. Performance metrics for evaluating PPV predictive models 

To evaluate the performance of the developed predictive models, the 
performance indicators are used, including Root Mean Squared Error (RMSE), 
Coefficient of determination (R2), and Mean Absolute Error (MAE), which are 
calculated using equation (6-8), respectively. 
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Where n is the total number of data. PPVy  is the measured value, $PPVy  is the 

predicted value and y is mean of measured values. In the most optimal model, R2 
should be equal to 1, RMSE and MAE should be equal to 0, respectively.  

 
 
5.2. Comparisons of PPV predictive models 

Once the forecasting models are available, the performance of the models is 
evaluated through performance indices in Eq. 6-8 on both the training datasets and 
the testing datasets. The testing datasets are considered as unseen data for 
objectively evaluating the quality of developed predictive models. As a result, the 
performance of predictive models, including empirical, MLR, and ANN is 
demonstrated in Table 2. 

 From Table 2, it can be seen that USBM experimental technique provides the 
lowest performance for estimating blast-induced PPV in this case study with RMSE 
= 4.446 and R2 = 0.816 on testing datasets. Examining the literature shows that 
USBM is also the most widely used experimental technology and many studies have 
successfully performed with this technique [2, 6, 32, 33, 41, 43]. However, the 
effectiveness of experimental techniques has not been well appreciated.  

 
Table 2. Performance of predictive models 

Model 
Training datasets Testing datasets 

RMSE R2 MAE RMSE R2 MAE 

Empirical (USBM) 5.382 0.63 2.802 4.446 0.816 2.873 

MLR 2.809 0.833 1.691 1.647 0.947 1.378 

ANN 7-5-1 2.187 0.898 1.374 2.715 0.839 2.253 
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ANN 7-7-1 0.903 0.983 0.702 1.354 0.960 0.922 

ANN 7-9-1 0.917 0.982 0.683 1.949 0.916 1.327 

ANN 7-8-6-1 1.164 0.971 0.705 2.273 0.891 1.403 

ANN 7-10-8-1 0.727 0.988 0.571 1.621 0.952 1.027 

ANN 7-15-10-1 0.928 0.981 0.651 1.915 0.921 1.307 

ANN 7-8-6-8-1 0.736 0.988 0.565 1.350 0.960 1.036 

ANN 7-10-8-5-1 0.669 0.990 0.528 1.061 0.980 0.717 

ANN 7-12-10-6-1 0.840 0.985 0.559 1.594 0.947 1.200 
  

Considering the MLR model on both the training datasets and the testing datasets 
shows that MLR seems to work quite well in this case with an RMSE of 1.647, R2 of 
0.947, and MAE of 1.378 on testing datasets. The MLR model results showed that 
the input variables in this study might have a relatively linear relationship. In 
addition, the number of input variables in the study is quite high. Therefore, the 
Standardized Rank Regression Coefficients (SRRC) is applied for sensitivity 
analysis based on linear or monotonic assumptions in the case of independent factors 
[49]. The results of the sensitivity analysis for the input variables are shown in  
Table 3. 
 

Table 3. Sensitivity indices of independent factors 
 original bias std. error min. c.i. max. c.i. 

W 0.615516 0.000404 0.018758 0.577353 0.645196 

R -0.12097 -0.00018 0.003134 -0.12666 -0.11528 

H -0.33539 0.001342 0.021048 -0.37885 -0.29262 

P -0.03751 -0.00016 0.002435 -0.04177 -0.03159 

B 0.003667 7.56E-06 0.000235 0.003091 0.004123 

S 0.052638 0.000102 0.004313 0.043578 0.061577 

T 0.051717 -6.1E-05 0.003389 0.044385 0.057916 
  

Accordingly, it can be seen that although the performance of the MLR model is 
rather high, not all input variables have a good linear relationship. Table 3 showed 
that only the maximum explosive capacity (W), monitoring distance (R), and the 
elevation between blast sites and monitor (H) are the main factors influencing the 
performance of the PPV prediction model. In some previous studies, some 
researchers have concluded that W and R are the two most influential variables in 
the quality of the PPV prediction model [7, 22, 37, 43, 51, 59]. However, the results 
of this study suggest that H is a parameter that should be added as one of the three 
factors that have a significant influence on the performance of the model, including 
W, R, H. 

 Regarding the ANN models developed, it can be seen that nine developed 
ANN models have uneven performance. Some ANN models provide higher 
performance than the MLR model, but some models perform less efficiently than the 
MLR model. Therefore, comparing the ANN models with one, two, and three 
hidden layers is interesting in this study. It can be seen that ANN model with only 
one hidden layer can handle quite well PPV prediction problem in this case, i.e., 
ANN 7-7-1 with an RMSE of 1.354, R2 of 0.960, and MAE of 0.922. The ANN 
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model with two hidden layers works well for predicting blast-induced PPV in this 
study. However, the best ANN model with two hidden layers in this study (ANN 7-
10-8-1) only achieved an RMSE of 1.621, R2 of 0.952, and MAE of 1.027, which is 
lower than that of ANN 7- 7-1 with one hidden layer. On the other hand, take a 
closer Table 3, it can be seen that not the ANN model with more hidden layers offers 
lower performance. The evidence is that the ANN 7-10-8-5-1 model with three 
hidden layers is the best performing model among the nine developed ANN models 
with RMSE = 1.061, R2 = 0.980, and MAE = 0.717 on testing datasets. With the 
difference between RMSE and MAE of the ANN 7-10-8-5-1 model is 0.344, 
indicating that the model is highly stable. More interesting in this study is the ANN 
model 7-12-10-6-1 with more hidden neurons provided lower performance than the 
ANN model 7-10-8-5-1 with an RMSE of 1.594, R2 of 0.947, and MAE of 1.200 on 
testing datasets. This shows that too many hidden layers and hidden neurons in each 
hidden layer not only increases the processing time of the ANN model but also the 
lack of match between neurons, which reduces the efficiency of the model. 
Therefore, the proposed ANN 7-10-8-5-1 model is the best model for predicting 
blast-induced PPV in this study. Fig. 4 illustrates the relationship between predicted 
and measured values of empirical, MLR, and ANN techniques. 

 

 
Fig. 4 Measured and predicted PPV values of Empirical, MLR and ANN models 

 
6. Conclusions and recommendations 

Blasting is one of the most effective methods for hard-rock fragmentation in 
mining and civil fields. Besides its advantages, the ground vibration (PPV) caused 
by blasting operations is one of the disadvantages that need to be estimated 
accurately. Forecasting blast-induced PPV in open-pit mine can be accomplished 
using a variety of methods. In this study, we have presented three approaches to 
solve the problem of PPV forecasting at Nui Beo open-pit coal mine, Vietnam. 
Based on the results, we draw some conclusions: 

 For predicting blast-induced PPV, various approaches should be used to 
compare and evaluate the specific performance of each approach. 

 Empirical techniques should be used as a fundamental approach to 
forecasting PPV. However, they need to be further researched and developed to 
improve the accuracy of the model.  
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 Multiple linear regression (MLR) is a rapid and straightforward method for 
estimating blast-induced PPV in an open-pit mine. Like the empirical technique, 
MLR should be used as a second baseline technique to compare and evaluate the 
performance of the model as well as the relationship between input variables. 

 Artificial Neural Network (ANN) is an advanced approach for predicting 
blast-induced PPV in an open-pit mine. They can solve the complex linear and 
nonlinear relationships of the input parameters in the PPV prediction. Therefore, 
they should be researched, developed and applied in innovative engineering to 
accurately predict blast-induced PPV in an open-pit mine. 

 The input parameters for predicting PPV should also be considered in detail. 
Of the input parameters, we propose the elevation between blast sites and monitor 
parameter (H) as an essential input parameter that dramatically influences the 
performance of the PPV prediction model. It should be used with maximum 
explosive capacity (W) and monitoring distance (R) in all approaches to predict 
PPV. 
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