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Abstract
The article presents selected issues in the field of stochastic simulation of production process-es. Attention was drawn to the possibility 
of including, in this type of models, the risk accompany-ing the implementation of processes. Probability density functions that can be 
used to characterize random variables present in the model are presented. The possibility of making mistakes while creat-ing this type 
of models was pointed out. Two selected examples of the use of stochastic simulation in the analysis of production processes on the 
example of the mining process are presented.
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1 Introduction
According to generally adopted definitions (e.g. Robinson 

2004), to simulate means to mimic or imitate a real system 
by means of experiments conducted on a model representing 
(presenting) that system.

Simulation, however, is not just about imitation and ex-
perimentation. It also assumes defin-ing, designing, and 
building a model, as well as defining the experiments that will 
be run and col-lecting and analyzing the data needed to run 
the model along with analyzing and interpreting the results 
obtained from the experiments. 

People all over the world are currently in a constant search 
for ways to reduce costs and make optimal use of resourc-
es. Achieving this in a dynamic, complex and interconnected 
global environ-ment is undoubtedly a challenge. Organiza-
tions are looking for lean system solutions to slim down their 
operations by eliminating everything that does not bring val-
ue to the customer while stream-lining the manufacturing 
process. They prepare value stream maps, identifying where 
time wasters and human effort occur. Optimization is treated 
as a key to success today (Beaverstock et. al. 2012). 

Managers who make decisions in organizations need to 
know what is happening in their sys-tems, as well as what will 
happen in their systems and what actions need to be taken 
against those changes. A basic definition of a system charac-
terizes it as a collection of interrelated elements with-in de-
fined boundaries (Checkland 1981). In practice, the system 
can be very elaborate and represent a factory or organization, 
or quite simple, when it characterizes a workstation, an emer-
gency room in a hospital, or a service desk at a bank. Deci-
sion-making is easy in simple systems and in situations with 
limited choice. However, more complex systems usually offer 
a large number of options for action.

Analyzing and making the right decision in the course of 
a manufacturing process is difficult because each system has 
one or more features, the general characteristics of which are 

as follows (Beaverstock et. al. 2012):
1. System components may be subject to random 

events.
2. Ambient random events affect the system.
3. The behavior of the system is dependent on an essen-

tial variable - time.
4. System elements encompass many interactions, and 

therefore there are many ways to con-nect paths be-
tween system elements.

Random events are common in manufacturing systems. 
These can include machine failures, operator response time 
to an incident, material delivery time and material losses, etc. 
When a man-ager proceeds to analyzing a system and formu-
lates a plan to optimize its performance, they may encounter 
extremely difficult problems. Traditional analytical methods 
may not be sufficient in view of the dynamic and random na-
ture of the system's behavior. Therefore, methods have been 
devel-oped to help managers analyze processes and are com-
monly known as decision support systems (Beaverstock et. al. 
2012). 

A decision support system applies analysis tools to help 
the decision maker formulate action plans. Simulation is one 
of them. Simulation (Robinson 2004) is defined as experi-
mentation and simplified imitation (computer-assisted) of 
a specific action. It provides mechanisms for exploring the 
system presented in it, alternatively experimenting and pre-
dicting the outcome of proposed ex-ternal solutions. This ap-
proach significantly increases the decision space (allows for 
evaluating a greater number of different ideas), does not in-
terfere with the actual system, and allows for estimat-ing the 
risk of actions. Managerial activities will be more effective if 
simulation modeling applica-tions are embedded in decision 
support systems, as this facilitates data entry into the model 
and improves the presentation of the resulting model.
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2 Stochastic simulation
In this paper, special emphasis is placed on stochastic 

simulation. This method is used for computer modeling of 
any processes (physical, economic, technological, etc.) or 
their fragments, whose characteristic feature is the presence 
of at least one random variable in their description.

The method was first used during the Manhattan Project 
research to build the U.S. atomic bomb. The stochastic model 
developed at that time concerned the analysis of neutron prop-
agation in a nuclear reactor. It was developed jointly by John 
von Neumann and Stanisław Ulam, a Polish mathematician.

The stochastic simulation method has been successfully 
used until today. The possibilities of creating complex stochas-
tic models, their recording in the form of a computer program 
in a language oriented at solving this type of problems, as well 
as the constantly improving capabilities of comput-ers, all de-
termine the choice of stochastic simulation as a method of solv-
ing problems described by models of an undetermined nature.

The current state of development of computer technology 
makes it possible to create accurate mathematical and eco-
nomic models that can be used in decision-making processes 
applicable to programming, design and production planning.

Computational methods referred to as Monte Carlo are 
closely related to stochastic simula-tions. They involve using 
"artificially generated" randomness to solve deterministic 
tasks. Monte Carlo methods are relatively simple and efficient, 
and, for some problems, they are the only compu-tational tool 
available. Stochastic simulations are available to everyone due 
to the availability of free and open source software that allows 
any computer user to use such tools. As an example, the R 
language is a powerful tool (see Niemiro 2013). 

The literature is very extensive, and one can mention 
works in the field of random number generators (e.g. Ziel-
inski, Wieczorkowski 1997), and a monograph (Ripley 1987) 
which also includes an introduction to the Monte Carlo meth-
ods. Advanced lectures can be found in modern mono-graphs 
by Asmussen and Glynn (Asmussen, Glynn 2007), Liu (Liu 
2004), Robert and Casella (Rob-ert, Casella 2004). The former 

is more oriented towards theoretical results, while the latter is 
more oriented towards applications. An introduction to Mar-
kov Chain Monte Carlo methods is included in the work of 
Geyer (Geyer 1992, Geyer 2005). The Markov chain theory 
with issues relevant to Mar-kov Chain Monte Carlo is also 
presented by Brémaud (Brémaud 1999). The theoretical basis 
for the analysis of randomized algorithms can be found in the 
work of Jerrum and Sinclair (Jerrum, Sinclair 1996) and Jer-
rum (Jerrum 1998), among others.

The use of stochastic simulation - as a research method 
- can be accompanied by errors or in-accuracies, which are 
illustrated in Figure 1. Individual terms mean: a real process 
is a process that is being studied by a simulation method; a 
model is a set of equations, inequalities, and/or algorithms 
that have been adopted as a mathematical description of the 
real process; a computer program is a notation of the model 
in a programming language of choice. Apparently minor mis-
take - made at the stage of building a model, writing it in the 
form of a computer program, or its verification - can be costly 
in its consequences. An analysis of such activities is presented 
in (Snopkowski 2009). 

 3 Distributions used in process description
Random variables occurring in process models (including 

for manufacturing processes) are characterized by appropri-
ate probability density functions. What is also noteworthy, the 
existing functional relationships between random variables 
can be replaced by a single probability density function (the 
so-called result distribution), which causes that the developed 
stochastic model of the analyzed process is simplified (Snop-
kowski 2005a, Snopkowski 2005b).

Examples of probability density functions used in simula-
tion models are summarized in Table 1. 

4 Use of simulation in the analysis of manufacturing 
processes

Making decisions concerning business activity in the 
environment of market economy requires the manager to 

Fig. 1. Errors, inaccuracies and their verification capabilities in a stochastic simulation
Rys. 1. Błędy, niedokładności i możliwości ich weryfikacji w symulacji stochastycznej
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demonstrate knowledge of many issues concerning the func-
tioning of the company and its environment. Decision mak-
ing is therefore burdened with high risk. To reduce the risk of 
possible failure of the decision made, many different types of 
risk assessment methods can be used to minimize the impact 
of adverse aspects of both the environment and internal busi-
ness conditions.

A special case of using stochastic simulation is the sim-
ulation of a mining process, in which several stages can be 
distinguished. The first is to determine and systematize the 
set of input data and to develop a mathematical model, then 
to determine the probability distribution of random variables 
and to implement the simulation of the process and finally to 
analyze the simulation results obtained. Among the data nec-
essary for the simulation are geological-mining, technical-or-
ganizational and financial data.  

4.2 Identifying the probability distribution of ex-
traction

A method of identifying the probability distribution of 
extraction (obtained from a longwall face) is an example of 
the possibility of using stochastic simulation in the analysis of 
a production process. 

The output obtained depends on the number of cuts made 
by the shearer during the working shift. This relationship is 
described by the following formula:

Qz=wc∙Td/Tc  (1)

where:
Qz – extraction per shift [Mg/shift]
wc – output from a production cycle [Mg/zm].
Td – shift availability time [min/zm]

Tc – production cycle time [min/cycle]

Production cycle output is calculated according to the formula:

wc=l∙h∙z∙γ (2)

where:
l – length of the longwall face [m],
h – height of the longwall face [m],
z – production cycle take-up [m],
γ – volumetric coal weight [Mg/m3].

The production from the production cycle wc for given 
geological parameters of the face is a constant quantity. The 
quotient Td i Tc, on the other hand, determines the number of 
production cycles that are performed during a work shift, i.e: 

L_c=Td/Tc  (3)

Variables Td and Tc have a direct impact on the level of 
extraction, and are also random variables because their val-
ues cannot be predicted with certainty before each work shift.  
Formula in (1) defines the relationship between three random 
variables, i.e. Qz,Td i Tc.

The identification of an extraction probability distribution 
occurs when its probability density function is determined. In 
doing so, one can use the well-known theorem:

Theorem 1. If Xis a continuous random variable with den-
sity centered on an interval (a,b) and y=g(x), and is a strictly 
monotonic function of the C1class with derivative on g'≠0 that 
interval while x=h(y)being the inverse of y=g(x), then the densi-
ty k of the continuous random variable Y=g(x)is oin the form of

k(y)=f[h(y)]|h' (y)| (4)

Fig. 2. Identification of probability density function fqz(qz) using stochastic simulation  
Rys. 2. Identyfikacja funkcji gęstości prawdopodobieństwa fqz(qz) za pomocą symulacji stochastycznej



143Inżynieria Mineralna — Styczeń – Czerwiec 2021 January – July — Journal of the Polish Mineral Engineering Society

For c<y<d, for the remaining yfunction , k(y)=0where 
c=min(c1,d1) d=max(c1,d1), c1=(lim)(x→a+0)g(x)cd1=(lim)(x→b-0)g(x).

Identification of the probability distribution for extraction 
consists in obtaining the probability density function for a 
random variable Qz defined by the relation  

Qz = wc∙Lc (5)

which is a strictly monotonic linear (increasing) function and 
satisfies the assumptions of Theorem 1. 

The inverse of this function is the Lc=(1/wc)Qz function , 
and its derivative is Lc'=1/wc. Furthermore, it should be not-
ed that output per cycle wc is always greater than zero, so by 
Theorem 1, the probability density function of the random 
variable Qz can be written as: 

 (6)

where:
fqz(qz) – probability density function of a random variable Qz 
of mining per shaft,
flc(qz/wc) – probability density function of the variable Lc of 

number of production cycles per work shift. 

As the variable Lc can also be represented by equation (3) 
then its probability density function flc can be determined us-
ing the following theorem: 

Theorem 2. If random variable U is the quotient of ran-
dom variables X and Y i.e. U=X/Y, then the quotient density of 
k1random variables X, Y is given by the formula 

 (7)

and when X and Y are independent random variables with 
densities f1 and f2 then 

 (8)

If we assume that the independent random variables Td 

and Tc are characterized by the following probability density 
functions and respectively, ftc (tc) ftd (td)then based on equa-
tion (8), the probability density function of the random vari-
able Lc represented by equation (3) is calculated according to 
the following equation: 

Fig. 3. Schematic diagram of calculation of output stream intensity index for a two-way shearer cutting technology 
Rys. 3. Schemat ideowy obliczania wskaźnika natężenia strugi wyjściowej dla technologii cięcia kombajnem dwukierunkowym
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 (9)

where:
flc – probability density function of a random variable Lc of 
number of production cycles per shift, 
ftd – probability density function of a random variable Td of 
available shift time, 
ftc – probability density function of the random variable Tc of 
production cycle time. 

Taking into account that random variables Lc and Tc take 
values from the set of positive real numbers, we obtain the 
following form of the formula

 (10)

By substituting the calculated form of the function into 
equation (6), we will obtain the following form:

 (11)

The probability density function fqz(qz) shown by the 
formula above identifies the probability distribution of ex-
traction per shift. The probability density function for dai-
ly extraction is derived in a similar manner, as presented in 
(Snopkowski 1998). 

In order to identify the probability density function of 
fqz(qz) a random variable Qz using the stochastic simulation 
method, the block diagram shown in Figure 2 must be im-
plemented. 

The generation of a realization of random variables ac-
cording to certain functions takes place within the procedures 
(subroutines, functions), which are part of the computer pro-

gram, implementing the process of stochastic simulation. A 
full description of the method enabling the identification of 
the functions listed in the scheme can be found in (Snopkow-
ski 2007).

The probability density function obtained as a result of 
the considerations carried out in this chapter fqz(qz) can be an 
additional instrument for planning the production activities 
of an enterprise. 

The formulas derived also allow for the calculation of the 
probability of execution or the risk of non-execution of a par-
ticular mining plan (also calculated as the probability of such 
event). 

4.2 Output stream intensity 
Determination of the rate of the output stream intensity 

as a function of probability for a production cycle realized in 
longwall faces of hard coal mines is another example of using 
stochastic simulation in the analysis of a production process.

The output flow rate φ2k is determined by the following 
dependence:

φ2k = Wc/Tc  (12)

where: 
Tc – production cycle time [min],
Wc – production cycle output [Mg] is determined by the for-
mula:

Wc = H∙z∙L∙γ∙ρ (13)

in which the following parameters are:
H – wall height [m],
z – shearer outreach [m],
L – wall length [m],

Fig. 4. Empirical probability distribution of the output flow rate  φ2k 

Fig. 5. Empirical distribution of the output flow rate 

Rys. 4. Empiryczny rozkład prawdopodobieństwa natężenia przepływu wyjściowego φ2k

Rys. 5. Rozkład empiryczny natężenia przepływu wyjściowego
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γ – coal volumetric weight [Mg/m3],
ρ – take-up utilization factor [-].

After appropriate substitutions and transformations, the 
formula for determining the rate of excavation takes the fol-
lowing form:

 (14)

where: 
Vcz – shearer maneuvering speed (shearer speed when clear-
ing the shearer route) [m/min],
Vr – shearer working speed [m/min],
Vz – shearer working speed when cutting [m/min],
xp – distance from the shearer stop position to the junction 
between the longwall and the gate road [m],
x2 – distance of the advancing conveyor from support [m],
p – minimum distance of the advancing conveyor from the 
shearer [m],
dk – shearer length [m],
t2, t5 – travel times for the crossover (drive) [min].

The calculation scheme to be carried out to determine the 
intensity of the output stream as a function of probability con-
sists of the following steps: 

Step I: Stochastic simulation of the index φ2k for the as-
sumed random variables, which is performed according to 
the scheme shown in Figure 3.

Step II: Determination of the empirical probability distri-
bution of the index φ2k, which is graphically shown in Figure 4.

Step III: Determination of the empirical distribution of 
the index φ2k (Figure 5). 

Determination of the empirical probability distribution of 
the output flow rate φ2k (stage II of the calculation) and the 
empirical distribution of the rate φ2k (stage III of the calcu-
lation), makes it possible to evaluate the effectiveness of the 
production cycle (in essence, the evaluation of the rate of the 
stream of excavated material) as a function of probability. 

Summary
Stochastic simulation is a research method offering many 

advantages. One of the most important ones is the ability to 
"observe" the studied process, using its computer model for 
this purpose. Running the model (simulation) multiple times 
makes it possible to obtain characteristics that are achiev-
able by observing the real process over a long period of time, 
which in many cases is not possible. Stochastic simulation 
provides an answer to the question "what happens if...". What 
happens to the transportation system if we introduce one-way 
traffic in parts of it, where traffic jams will occur, what will be 
the average travel time, etc. What happens to a manufactur-
ing system if we introduce machines with different reliability 
characteristics, to what extent will this affect its performance 
as a system.

This paper presents the use of simulation to identify the 
probability distributions of the extraction and the output flow 
rate obtained in the production process as an example of a 
stochastic simulation of the production process. 
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