Selected Issues

Stochastic Simulation of Production Processes —

Ryszard SNOPKOWSKI", Marta SUKIENNIK?, Aneta NAPIERAJ?

Y Prof. dr; AGH University of Science and Technology in Krakow, Mickiewicza 30, 30-059 Krakéw, email: snopkows@agh.edu.pl
2 dr, prof. AGH, AGH University of Science and Technology in Krakow, Mickiewicza 30, 30-059 Krakow,

email: marta.sukiennik@agh.edu.pl

% dr, AGH University of Science and Technology in Krakow, Mickiewicza 30, 30-059 Krakéw, email: agrodek@agh.edu.pl

http://doi.org/10.29227/IM-2021-01-18
Submission date: 17-01-2021 | Review date: 29-05-2021

example of the mining process are presented.

Abstract
The article presents selected issues in the field of stochastic simulation of production process-es. Attention was drawn to the possibility
of including, in this type of models, the risk accompany-ing the implementation of processes. Probability density functions that can be
used to characterize random variables present in the model are presented. The possibility of making mistakes while creat-ing this type
of models was pointed out. Two selected examples of the use of stochastic simulation in the analysis of production processes on the
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1 Introduction

According to generally adopted definitions (e.g. Robinson
2004), to simulate means to mimic or imitate a real system
by means of experiments conducted on a model representing
(presenting) that system.

Simulation, however, is not just about imitation and ex-
perimentation. It also assumes defin-ing, designing, and
building a model, as well as defining the experiments that will
be run and col-lecting and analyzing the data needed to run
the model along with analyzing and interpreting the results
obtained from the experiments.

People all over the world are currently in a constant search
for ways to reduce costs and make optimal use of resourc-
es. Achieving this in a dynamic, complex and interconnected
global environ-ment is undoubtedly a challenge. Organiza-
tions are looking for lean system solutions to slim down their
operations by eliminating everything that does not bring val-
ue to the customer while stream-lining the manufacturing
process. They prepare value stream maps, identifying where
time wasters and human effort occur. Optimization is treated
as a key to success today (Beaverstock et. al. 2012).

Managers who make decisions in organizations need to
know what is happening in their sys-tems, as well as what will
happen in their systems and what actions need to be taken
against those changes. A basic definition of a system charac-
terizes it as a collection of interrelated elements with-in de-
fined boundaries (Checkland 1981). In practice, the system
can be very elaborate and represent a factory or organization,
or quite simple, when it characterizes a workstation, an emer-
gency room in a hospital, or a service desk at a bank. Deci-
sion-making is easy in simple systems and in situations with
limited choice. However, more complex systems usually offer
a large number of options for action.

Analyzing and making the right decision in the course of
a manufacturing process is difficult because each system has
one or more features, the general characteristics of which are

as follows (Beaverstock et. al. 2012):

1. System components may be subject to random
events.
Ambient random events affect the system.

3. The behavior of the system is dependent on an essen-
tial variable - time.

4. System elements encompass many interactions, and
therefore there are many ways to con-nect paths be-
tween system elements.

Random events are common in manufacturing systems.
These can include machine failures, operator response time
to an incident, material delivery time and material losses, etc.
When a man-ager proceeds to analyzing a system and formu-
lates a plan to optimize its performance, they may encounter
extremely difficult problems. Traditional analytical methods
may not be sufficient in view of the dynamic and random na-
ture of the system's behavior. Therefore, methods have been
devel-oped to help managers analyze processes and are com-
monly known as decision support systems (Beaverstock et. al.
2012).

A decision support system applies analysis tools to help
the decision maker formulate action plans. Simulation is one
of them. Simulation (Robinson 2004) is defined as experi-
mentation and simplified imitation (computer-assisted) of
a specific action. It provides mechanisms for exploring the
system presented in it, alternatively experimenting and pre-
dicting the outcome of proposed ex-ternal solutions. This ap-
proach significantly increases the decision space (allows for
evaluating a greater number of different ideas), does not in-
terfere with the actual system, and allows for estimat-ing the
risk of actions. Managerial activities will be more effective if
simulation modeling applica-tions are embedded in decision
support systems, as this facilitates data entry into the model
and improves the presentation of the resulting model.
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Fig. 1. Errors, inaccuracies and their verification capabilities in a stochastic simulation

Rys. 1. Bledy, niedokladnosci i mozliwosci ich
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2 Stochastic simulation

In this paper, special emphasis is placed on stochastic
simulation. This method is used for computer modeling of
any processes (physical, economic, technological, etc.) or
their fragments, whose characteristic feature is the presence
of at least one random variable in their description.

The method was first used during the Manhattan Project
research to build the U.S. atomic bomb. The stochastic model
developed at that time concerned the analysis of neutron prop-
agation in a nuclear reactor. It was developed jointly by John
von Neumann and Stanistaw Ulam, a Polish mathematician.

The stochastic simulation method has been successfully
used until today. The possibilities of creating complex stochas-
tic models, their recording in the form of a computer program
in a language oriented at solving this type of problems, as well
as the constantly improving capabilities of comput-ers, all de-
termine the choice of stochastic simulation as a method of solv-
ing problems described by models of an undetermined nature.

The current state of development of computer technology
makes it possible to create accurate mathematical and eco-
nomic models that can be used in decision-making processes
applicable to programming, design and production planning.

Computational methods referred to as Monte Carlo are
closely related to stochastic simula-tions. They involve using
"artificially generated" randomness to solve deterministic
tasks. Monte Carlo methods are relatively simple and efficient,
and, for some problems, they are the only compu-tational tool
available. Stochastic simulations are available to everyone due
to the availability of free and open source software that allows
any computer user to use such tools. As an example, the R
language is a powerful tool (see Niemiro 2013).

The literature is very extensive, and one can mention
works in the field of random number generators (e.g. Ziel-
inski, Wieczorkowski 1997), and a monograph (Ripley 1987)
which also includes an introduction to the Monte Carlo meth-
ods. Advanced lectures can be found in modern mono-graphs
by Asmussen and Glynn (Asmussen, Glynn 2007), Liu (Liu
2004), Robert and Casella (Rob-ert, Casella 2004). The former

is more oriented towards theoretical results, while the latter is
more oriented towards applications. An introduction to Mar-
kov Chain Monte Carlo methods is included in the work of
Geyer (Geyer 1992, Geyer 2005). The Markov chain theory
with issues relevant to Mar-kov Chain Monte Carlo is also
presented by Brémaud (Brémaud 1999). The theoretical basis
for the analysis of randomized algorithms can be found in the
work of Jerrum and Sinclair (Jerrum, Sinclair 1996) and Jer-
rum (Jerrum 1998), among others.

The use of stochastic simulation - as a research method
- can be accompanied by errors or in-accuracies, which are
illustrated in Figure 1. Individual terms mean: a real process
is a process that is being studied by a simulation method; a
model is a set of equations, inequalities, and/or algorithms
that have been adopted as a mathematical description of the
real process; a computer program is a notation of the model
in a programming language of choice. Apparently minor mis-
take - made at the stage of building a model, writing it in the
form of a computer program, or its verification - can be costly
in its consequences. An analysis of such activities is presented
in (Snopkowski 2009).

3 Distributions used in process description

Random variables occurring in process models (including
for manufacturing processes) are characterized by appropri-
ate probability density functions. What is also noteworthy, the
existing functional relationships between random variables
can be replaced by a single probability density function (the
so-called result distribution), which causes that the developed
stochastic model of the analyzed process is simplified (Snop-
kowski 2005a, Snopkowski 2005b).

Examples of probability density functions used in simula-
tion models are summarized in Table 1.

4 Use of simulation in the analysis of manufacturing
processes

Making decisions concerning business activity in the
environment of market economy requires the manager to
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Fig. 2. Identification of probability density function f_(q,) using stochastic simulation

Rys. 2. Identyfikacja funkcji gestosci prawdopodobiefistwa f (q,) za pomocg symulacji stochastycznej

START

Generating values £ by distribution f4

Generating values £, by distribution fi.

=i+l

Identification of f;(g;) functions from a set

N

STOP

demonstrate knowledge of many issues concerning the func-
tioning of the company and its environment. Decision mak-
ing is therefore burdened with high risk. To reduce the risk of
possible failure of the decision made, many different types of
risk assessment methods can be used to minimize the impact
of adverse aspects of both the environment and internal busi-
ness conditions.

A special case of using stochastic simulation is the sim-
ulation of a mining process, in which several stages can be
distinguished. The first is to determine and systematize the
set of input data and to develop a mathematical model, then
to determine the probability distribution of random variables
and to implement the simulation of the process and finally to
analyze the simulation results obtained. Among the data nec-
essary for the simulation are geological-mining, technical-or-
ganizational and financial data.

4.2 Identifying
traction

A method of identifying the probability distribution of
extraction (obtained from a longwall face) is an example of

the probability distribution of ex-

the possibility of using stochastic simulation in the analysis of
a production process.

The output obtained depends on the number of cuts made
by the shearer during the working shift. This relationship is
described by the following formula:

Q=w_T,/T. (1)

where:

Q, - extraction per shift [Mg/shift]

w_— output from a production cycle [Mg/zm].
T, - shift availability time [min/zm]

T, - production cycle time [min/cycle]
Production cycle output is calculated according to the formula:
WC:l.h.Z.Y (2)

where:

1 - length of the longwall face [m],
h - height of the longwall face [m],
z — production cycle take-up [m],

y - volumetric coal weight [Mg/m?].

The production from the production cycle w_for given
geological parameters of the face is a constant quantity. The
quotient T, i T, on the other hand, determines the number of
production cycles that are performed during a work shift, i.e:

L_c=T/T 3)

Variables T, and T have a direct impact on the level of
extraction, and are also random variables because their val-
ues cannot be predicted with certainty before each work shift.
Formula in (1) defines the relationship between three random
variables, i.e. Q,T,iT.

The identification of an extraction probability distribution
occurs when its probability density function is determined. In
doing so, one can use the well-known theorem:

Theorem 1. If Xis a continuous random variable with den-
sity centered on an interval (a,b) and y=g(x), and is a strictly
monotonic function of the C'class with derivative on g'#0 that
interval while x=h(y)being the inverse of y=g(x), then the densi-
ty k of the continuous random variable Y=g(x)is oin the form of

k(y)=flh()Ih" ()| (4)
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Fig. 3. Schematic diagram of calculation of output stream intensity index for a two-way shearer cutting technology

Rys. 3. Schemat ideowy obliczania wskaznika natezenia strugi wyjsciowej dla technologii ciecia kombajnem dwukierunkowym
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¥ar =
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{du @2t -0l )

STOP

For c<y<d, for the remaining yfunction , k(y)=Owhere
c=min(c,d,) d=max(c,d ), clz(lim)(mw)g(x)cdl=(lim)(mro)g(x).

Identification of the probability distribution for extraction
consists in obtaining the probability density function for a
random variable Q, defined by the relation

Q=w-L

z c e

5)

which is a strictly monotonic linear (increasing) function and
satisfies the assumptions of Theorem 1.

The inverse of this function is the L =(1/w_)Q, function,
and its derivative is L '=1/w . Furthermore, it should be not-
ed that output per cycle w_is always greater than zero, so by
Theorem 1, the probability density function of the random
variable Q, can be written as:

1 z
fuad = f(G)  for aser (©)

where:

f.(q,) - probability density function of a random variable Q,
of mining per shaft,

f.(q,/w.) - probability density function of the variable L_ of

i=i+l

number of production cycles per work shift.

As the variable L_can also be represented by equation (3)
then its probability density function f,_can be determined us-
ing the following theorem:

Theorem 2. If random variable U is the quotient of ran-
dom variables X and Y i.e. U=X/Y, then the quotient density of
k random variables X, Y is given by the formula

ky(u) = f fCuy, ) |yl dy (7)

and when X and Y are independent random variables with
densities f and f, then

k@ = [ 6 L) bl dy (8)

If we assume that the independent random variables T,
and T, are characterized by the following probability density
functions and respectively, f_(t) f, (t,)then based on equa-
tion (8), the probability density function of the random vari-
able L_represented by equation (3) is calculated according to
the following equation:
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Fig. 4. Empirical probability distribution of the output flow rate ¢,

Rys. 4. Empiryczny rozklad prawdopodobienistwa natezenia przeptywu wyjéciowego ¢,

g

Fig. 5. Empirical distribution of the output flow rate

Rys. 5. Rozklad empiryczny natezenia przeptywu wyjsciowego

fielt) = [ uallet) freOleeld. )

where:

f, — probability density function of a random variable L_ of
number of production cycles per shift,

f, — probability density function of a random variable T, of
available shift time,

f . — probability density function of the random variable T of
production cycle time.

Taking into account that random variables L_and T take
values from the set of positive real numbers, we obtain the
following form of the formula

{flcczc) =7 fralete) fro(todt, dt. forl, >0 (10)

fied) =0 for other instances 1,

By substituting the calculated form of the function into
equation (6), we will obtain the following form:

o 02) = Wijfm (feee) feteore ar, (1)
0

The probability density function f (q,) shown by the
formula above identifies the probability distribution of ex-
traction per shift. The probability density function for dai-
ly extraction is derived in a similar manner, as presented in
(Snopkowski 1998).

In order to identify the probability density function of
f (q,) a random variable Q, using the stochastic simulation
method, the block diagram shown in Figure 2 must be im-
plemented.

The generation of a realization of random variables ac-
cording to certain functions takes place within the procedures
(subroutines, functions), which are part of the computer pro-

gram, implementing the process of stochastic simulation. A
full description of the method enabling the identification of
the functions listed in the scheme can be found in (Snopkow-
ski 2007).

The probability density function obtained as a result of
the considerations carried out in this chapter f_(q,) can be an
additional instrument for planning the production activities
of an enterprise.

The formulas derived also allow for the calculation of the
probability of execution or the risk of non-execution of a par-
ticular mining plan (also calculated as the probability of such
event).

4.2 Output stream intensity
Determination of the rate of the output stream intensity
as a function of probability for a production cycle realized in
longwall faces of hard coal mines is another example of using
stochastic simulation in the analysis of a production process.
The output flow rate @, is determined by the following
dependence:

(P2k= Wc/Tc (12)

where:

T. - production cycle time [min],

W,_ - production cycle output [Mg] is determined by the for-
mula:

W =HzLvyp (13)

in which the following parameters are:
H - wall height [m],

z — shearer outreach [m],

L - wall length [m],
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y - coal volumetric weight [Mg/m®],
p — take-up utilization factor [-].

After appropriate substitutions and transformations, the
formula for determining the rate of excavation takes the fol-
lowing form:

H-z-L-y-p

1 1 T 1
E(xp—dk)+ﬁ-(L—xp)+(E+Vr)-(x2+dk+p+s)+tz+t5

P2k = (14)

where:

V_, - shearer maneuvering speed (shearer speed when clear-
ing the shearer route) [m/min],

V., - shearer working speed [m/min],

V, - shearer working speed when cutting [m/min],

x, - distance from the shearer stop position to the junction
between the longwall and the gate road [m],

x, — distance of the advancing conveyor from support [m],

p - minimum distance of the advancing conveyor from the
shearer [m],

d, - shearer length [m],

t,, t, - travel times for the crossover (drive) [min].

The calculation scheme to be carried out to determine the
intensity of the output stream as a function of probability con-
sists of the following steps:

Step I: Stochastic simulation of the index ¢, for the as-
sumed random variables, which is performed according to
the scheme shown in Figure 3.

Step II: Determination of the empirical probability distri-
bution of the index ¢, , which is graphically shown in Figure 4.

Step III: Determination of the empirical distribution of
the index ¢, (Figure 5).

Determination of the empirical probability distribution of
the output flow rate @, (stage II of the calculation) and the
empirical distribution of the rate ¢, (stage III of the calcu-
lation), makes it possible to evaluate the effectiveness of the
production cycle (in essence, the evaluation of the rate of the
stream of excavated material) as a function of probability.

Summary

Stochastic simulation is a research method offering many
advantages. One of the most important ones is the ability to
"observe" the studied process, using its computer model for
this purpose. Running the model (simulation) multiple times
makes it possible to obtain characteristics that are achiev-
able by observing the real process over a long period of time,
which in many cases is not possible. Stochastic simulation
provides an answer to the question "what happens if...". What
happens to the transportation system if we introduce one-way
traffic in parts of it, where traffic jams will occur, what will be
the average travel time, etc. What happens to a manufactur-
ing system if we introduce machines with different reliability
characteristics, to what extent will this affect its performance
as a system.

This paper presents the use of simulation to identify the
probability distributions of the extraction and the output flow
rate obtained in the production process as an example of a
stochastic simulation of the production process.
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